Write-up 10: Using Parametric Equations to Graph Line Segments

David
November 26, 2013

This write-up is in response to the following prompt:
Write parametric equations of a line segment through (7,5) with slope of 3. Graph the line segment using your equations. As a line segment, it will have end points. Explore how you would choose endpoints of such that the two distances from $(7,5)$ are 2 units and 3 units.

Having rarely used parametric equations in my mathematics classes, this was an interesting write-up for me. I started writing my equations using the point my line must go through as an origin of sorts and a consideration of slope as "rise over run":
After this successful first attempt, I moved on to the second part of the prompt: choosing

$$
\begin{aligned}
& -\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7+t \\
5+3 t
\end{array}\right] \\
& -y=\frac{5}{7} \lambda
\end{aligned}
$$

Figure 1: The line $y=\frac{5}{7} x$ was used to check that the parametric equations were correct.
endpoints that are 2 and 3 units away from (7,5).
I first created the following diagram: Then, using the Pythagorean Theorem, I determined

$$
\begin{aligned}
& x_{1}^{2}+\left(3 x_{1}\right)^{2}=4 \Rightarrow x_{1}=\frac{2 \sqrt{10}}{10} \\
& x_{1}^{2}+\left(3 x_{1}\right)^{2}=25 \Rightarrow x_{2}=\frac{5 \sqrt{10}}{10}
\end{aligned}
$$

I then edited my graph to include from which I could gather that

$$
x_{1}=\frac{2 \sqrt{10}}{10}, x_{3}=\frac{3 \sqrt{10}}{10}
$$

Therefore, the most simple change to the parametrized line was to simply change adding t from any range to adding $\frac{\sqrt{10}}{10} t$ on the range $[-3,2]$.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7+\frac{\sqrt{10}}{10} t \\
5+3 \frac{\sqrt{10}}{10} t
\end{array}\right]
$$

Could we parametrize this segment differently, though? Perhaps we could work backwards to determine what the endpoints that are 2 and 3 units away from $(7,5)$ are before parametrizing the general line through $(7,5)$. With all of the legwork done above, we can identify the endpoints as

$$
\left(7+\frac{2 \sqrt{10}}{10}, 5+\frac{6 \sqrt{10}}{10}\right) \text { and }\left(7-\frac{3 \sqrt{10}}{10}, 5-\frac{9 \sqrt{10}}{10}\right)
$$

Thus, if we use the lower left point as our origin, we can calculate the differences in the x and y directions as

$$
x_{2}=\frac{5 \sqrt{10}}{10}, 3 x_{2}=\frac{15 \sqrt{10}}{10}
$$

and parametrize as follows for $t \in\left[0, \frac{5 \sqrt{10}}{10}\right]$, with $\frac{5 \sqrt{10}}{10} \approx 1.58113883$.
$-\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}\left(7-3 \frac{\sqrt{10}}{10}\right)+t \\ \left(5-9 \frac{\sqrt{10}}{10}\right)+3 t\end{array}\right]$

